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Abstract

The uncertainty in the variables and functions in computer simulations can be
quantified by probability distributions and the correlations between the variables.
We augment the standard computer arithmetic operations and the interval arith-
metic approach to include probability distribution variable (PDV) as a basic data
type. Probability distribution variable is a random variable that is usually charac-
terized by generalized probabilistic discretization. The correlations or dependencies
between PDVs that arise in a computation are automatically calculated and tracked.
These correlations are used by the computer arithmetic rules to achieve the con-
vergent approximation of the probability distribution function of a PDV and to
guarantee that the derived bounds include the true solution. In many calculations,
the calculated uncertainty bounds for PDVs are much tighter than they would have
been had the dependencies been ignored. We describe the new PDV Arithmetic and
verify the effectiveness of the approach to account for the creation and propagation
of uncertainties in a computer program due to uncertainties in the initial data.
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1 Introduction

Computational uncertainties are unavoidable
in numerical calculations. The generation and
propagation of uncertainties in the initial
conditions, data and the constants in math-
ematical model can have serious implications
in the reliability of the simulation and the
decisions being made based on the simula-
tion. These inherent uncertainties cannot be
made arbitrarily small by additional com-
putations, using higher order formulas, or
carrying more significant digits in the arith-
metic.

Even when one has a good grasp on the ac-
curacy of the initial data for a computa-
tion (such as measured data from a well-
calibrated experiment) often little is known
a priori about the accuracy of the results.
The uncertainties in a simulation can pol-
lute the reliability of the results at every
stage of a computation. They may grow or
even shrink during the calculations. The mag-
nitude of computational uncertainty is of
great concern to any thoughtful program-
mer, since no computation can be consid-
ered complete unless one has some knowl-
edge of its accuracy.

When the accuracy of the final result is cru-
cial and the computation is done in ordi-
nary arithmetic, then it must be tested by
repeated tedious calculations or sensitivity
analysis. Approaches and representations of

uncertainty within computer simulations must

be developed that are efficient and provide
sharp realistic bounds for the propagation of
uncertainty. Analytical techniques are ideal
in getting close forms of solutions while very
few real-world problems can be solved by
these techniques. Numerical methods become
widely used. Monte Carlo [42] is a powerful
approach, but has some serious shortcom-

ings [13], such as difficulties in handling un-
certainties that have unknown dependency
relationships or that are with imprecise prob-
abilities, that is, with distributions that are
not fully specified.

Non-Monte Carlo methods have been de-
veloped since 1960s [19]. In the early algo-
rithms [8, 19, 21, 35], independent relation-
ships were assumed among all the random
variables and no dependency issues were taken
into account throughout a computation. Later
copula based approach, which is based on
the theory of copulas [36], was studied. This
approach is focused on finding the bounds
for joint distributions from their given marginal
distributions, when the dependency relation-
ships among the random variables are un-
known. Some early work in this approach
was done by Frank et al. [16] for bounding
sums of random variables. Then it was ex-
tended by Williamson in his Ph.D. disser-
tation [45] and Downs [46] to bounding the
results of adding, subtracting, multiplying
and dividing random variables. More recent
work of Cossette et al. [9] provided results
on multivariate copula models. Ferson’s RA-
MAS Risk Calc [14] as part of a commer-
cial software package is an implementation
of the copula approach.

Another major non-Monte Carlo based ap-
proach is interval approach. It relies on prob-
abilistic discretizations of random variables.
Berleant et al.’s DEnv algorithm [2-5] is a
recent representative of this approach. DEnv
makes use of linear programming [22] to achieve
dependency bounds for random variables that
may be independent, have unknown depen-
dency, or have a correlation value as lim-
ited information about the dependency. Sta-
tool [43] implementing DEnv is a tool for
operations on distribution functions and p-
boxes [15].



Regen et al. [39] show that DEnv and the
copula-based Probabilistic Arithmetic [45,
46] are equivalent in important ways. Al-
though both of these algorithms can draw
sharp bounds for joint distributions from
given marginal distributions with unknown
dependency, neither approach tracks the de-
pendencies that develop between the ran-
dom variables throughout a computation.
Consequently in multi-step calculations, these
approaches assume that the new dependency
relationships of the marginal distributions
obtained from the previous step of calcu-
lation are either independent or unknown.
In computer programs where many of the
random variables have strong deterministic
function relationships, this assumption can
quickly cause the bounding intervals to be-

come useless over estimates of the sharp bounds.

Berleant et al. [4, 6] describes how DEnv
deals with correlation between input distri-
butions to obtain tighter bounds using cor-
relation coefficient as a known interval. How-
ever, these correlations need to be automati-
cally updated in the next step of calculation
and the mathematical theory validated for
giving sharp bounds must still be developed.

Therefore new approach that can perform
dependency tracking has to be developed.
Using generalized probabilistic discretizations
of probability distribution variables (PDVs),
which are equivalent to random variables,
we have developed a new computer arith-
metic. Our PDV Arithmetic extends an in-
terval approach with dependency tracking
[18] and is closely related to the extensive
advances in interval arithmetic [34].

PDV Arithmetic is distinguished from the
other existing approaches in a sense that it
tracks the dependencies that develop through-
out a computation and uses this information
to obtain tight bounds that are guaranteed
to converge to the sharp bounds as the in-

put generalized probabilistic discretizations
are refined. Thus, it can account for the cre-
ation and propagation of uncertainties in
a computer program due to uncertainties
in the data and that dynamically arise in
the computation. PDV Arithmetic also pro-
vides convergent approximations of the ex-
act generalized probabilistic discretizations
of PDVs based on the input random vari-
ables. The exact bounds for distributions of
PDVs can be derived directly from the ex-
act generalized probabilistic discretizations
with respect to the input random variables.

PDV Arithmetic can also be applied in in-
terval computations by ignoring the proba-
bility part in the arithmetic. With the de-

pendency tracking feature, it gives sharp bounds

to the results of any interval functions that
are in form of algebraic expressions.

The current version of PDV Arithmetic as-
sumes that all PDV inputs are independent.
Although this assumption requires some ad-
ditional work to define any known correla-
tions between the input random variables
to minimized the number of the inputs such
that the inputs are independent, it greatly
simplifies the analysis and allows us to lay a
foundation for later versions of PDV Arith-
metic that will allow for general dependency
relationships among input random variables.

We implement PDV Arithmetic by adding
a new data type, called probability distri-
bution variable (PDV), to an existing com-
puter language. This follows the approaches
of several interval arithmetic implementa-
tions [23,25] where the programmer can em-
bed interval arithmetic in existing complex
codes. Also, many of the technical details
can be easily hidden from the program with
the help of a preprocessing program that
converts the extended language into a stan-
dard portable version of the program.



The structure of this paper is as follows. We
first introduce some concepts needed to de-
fine the PDV arithmetic rules. These include
the definition of PDV, the independence and
correlation among PDVs, and the general-
ized probabilistic discretizations of PDVs.
We then describe and analyze the underly-
ing algorithm that defines PDV Arithmetic.
Next we give a brief description of how we
implement PDV Arithmetic in Fortran 77
by using a Perl preprocessor and subrou-
tine library of PDV arithmetic operations.
We use two sets of numerical examples to
illustrate how PDV Arithmetic automati-
cally characterizes the uncertainties in cal-
culating the eigenvalues of a matrix of PDVs
and the challenge problem set proposed by
Oberkampf et al. [38].

2 Basic Concepts and Results

In this section, we introduce some concepts
and results without giving proofs. Mathe-
matical details can be found in [31].

Definition 2.1 (Probability Distribution Vari-

able)

A Probability Distribution Variable (PDV)
is a random variable [12]. The range inter-
val of a PDV is the smallest closed interval
that contains the support [12] of the PDV.

Definition 2.2 (Independence)

A number of PDVs x4, ..., x, are indepen-
dent if they are independent random vari-
ables [12], i.e., for any Borel sets A,, ...,
A, on the real line,

Prob{z;, € A;, ..., T5 € Ay}

k
= [[ Prob{z;, € A},

j=1

where 1 <k<n, 1< <...<tp <n.

Definition 2.3 (Pre-image PDV Set)

If PDV z is a function f of PDVs ey, es, ...,
e; where f is not constant at any e; when
the others are fized, 1 < i < [, then set
{e1, ez, ..., €} is called a pre-image PDV set
of x.

Definition 2.4 (Correlation)

Two PDVs are dependent if they have com-
mon pre-image PDV set. Two PDVs are par-
tially dependent if their pre-image PDV sets
have nonempty intersection. Both dependent
and partially dependent are called correlated.

Note: Every two PDVs in a computer pro-
gram must be dependent, partially depen-
dent, or independent if the input PDVs are
independent.

Definition 2.5 (Generalized Probabilistic Dis-

cretization)

A generalized probabilistic discretization (GPD)

of PDV x is defined by

l
1§r§l,2przl,

r=1

GPD(z)={(I,,p.)

I, is an interval,

l
the support of x C U I, } ,

r=1

where I, is called a bin and p, is the associ-
ated probability with which x assumes values
in I.. The width of GPD(z) is defined by

IGPD(z)|| = sup {[|1,]|} -
1<r<i

In particular, if intervals I,’s are mutually
disjoint, then the above GPD(x) is called a
probabilistic discretization of x, denoted by
PD(z).
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Fig. 2.1. Illustrative figure of the probabilis-
tic discretization (PD) of a PDV with 4 bins
and probability distribution {0.2,0.3,0.4,0.1}
in the range interval.
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Fig. 2.2. Illustrative figure of the general-
ized probabilistic discretization (GPD) of a
PDV with 4 bins and probability distribution
{0.2,0.3,0.4,0.1} in the range interval.

Examples of probabilistic discretization and
generalized probabilistic discretization are
illustrated in Figures 2.1 and 2.2. Notice
that probabilistic discretization is graphed
as histogram.

Definition 2.6 (Refinement of Generalized
Probabilistic Discretization)

Assume that GPDy(xz) and GPDy(z) are
two generalized probabilistic discretizations

GPD2($) = {(Irv pr) r= 17 ---;l(I,p);

l1,p) U(1,p)

U Irzjv Zpr:p;
r=1 r=1

V(I,p) € GPDl(x)} ,

where I, are intervals.

Note: The refinements of intervals I allow
overlaps among the interval pieces I,.

Definition 2.7 (Inclusion of Generalized Prob-
abilistic Discretization)

Assume that GPDi(z) and GPDs(z) are
two generalized probabilistic discretizations

of PDV x. GPDy(z) isincluded in GPD;(x),
denoted by GPDy(x) C GPD(z), if there
exists a one-to-one correspondence  : (I3, ps) €
GPDy(z) — (I1,p1) € GPD;(x) such that

I, C I, and p; = p;.

Note: The inclusion of generalized proba-
bilistic discretization can be viewed as a spe-
cial refinement of generalized probabilistic
discretization by considering that I is re-
fined into

L =L IL\k)
and I\, is assigned with zero probability.

Definition 2.8 (Convergence of Generalized
Probabilistic Discretization)

Assume that GPD(x) and GPD,(z) (r € A,
A is an indez set) are generalized probabilis-
tic discretizations of PDV x. Assume that
To is a limit point of A. GPD,(x) is conver-
gent to GPD(z) as r tends to 1o, denoted
by GPD,(x) — GPD(z) as r — rg, or
lim,_,,, GPD,(z) = GPD(z), if there exists
a one-to-one correspondence m, : (I.,p.) €
GPD,(z) — (I,p) € GPD(z) for each
r € A, such that a, — a, b, = b, andp, = p

of PDV 2. GPDy(z) is arefinement of GPDy(x) as T — ro, where a, b and a,, b, are the left

if GPDy(x) has the following representation

and right endpoints of I and I, respectively.



Theorem 2.1 (Relationship between a PDV
and its Generalized Probabilistic Discretiza-

tions)

Each generalized probabilistic discretization

of PDV z corresponds to a class of PDVs

that have the same generalized probabilistic

discretization and converge pointwise to x

everywhere when the width of the generalized

probabilistic discretization tends to zero.

Proof: See [31].

Note: Generalized probabilistic discretiza-
tion of PDV corresponds to the basic prob-
ability assignment in Evidence Theory [27].
Theorem 2.1 provides a way to group PDVs
by their generalized probabilistic discretiza-
tion. Each generalized probabilistic discretiza-
tion corresponds to a family of PDVs, and
each PDV in the family is a representative
of the family.

Consider a PDV z where

Assume that the left endpoint and right end-
point of I, are a, and b,, respectively.

Define two probability distribution functions
Mgpp(s) and mapp(s) as the step functions:

MGPD(z)(z): Z Dr,

r|ar<z

MaGPD(x) (Z) - Z Dr,
r|br<z

z € R.

We denote the class of PDVs determined by
GPD(z) as Capp(a)-

Theorem 2.2 Let F), be the distribution func-

tion of PDV x and F, be the distribution
function of PDV y € Cgpp(z). Then

mapp()(2) < Fy(2) < Mapp@)(2),
VzeR, Vye CGPD(z) .

Furthermore,
F.(z)= lim M (2
)= apBiE -0 Morpe )
= lim m 2(2), zeR.
e B 6P )

Proof: See [31].

The graphs of Mgpp(:) and mgpp(e) are dis-
connected since Mgpp(z) and mgpp(r) are
step functions. If we connect the disconnect-
ing points with vertical lines, the graphs be-
come connected and we call them the con-
nected graphs of Mgpp(z) and mgpp(z), T€-
spectively. Notice that these two graphs have
the same starting and ending points.

Theorem 2.2 supports the following defini-
tion.

Definition 2.9 (Probability Distribution
Bounds, Probability Distribution Boz, Re-
fined Probability Distribution Boz)

Mgapp) and mgpp) are called the upper
and lower probability distribution bounds
(upper and lower p-bounds) of x with re-
spect to GPD(x), respectively. The area en-
closed by the connected graphs of Mgpp(z)
and mgpp(z) 1S called the probability dis-
tribution box (p-box) of x with respect to
GPD(z). If GPDy(z) is a refined general-
ized probabilistic discretization of x with re-
spect to GPDy(x), the p-box determined by
GPDs(z) is called a refined probability dis-
tribution box (refined p-box) of x with re-
spect to GPD;(x).

Note: The above defined probability dis-
tribution bounds are related to the belief
and plausibility measures in Evidence The-



ory (Dempster and Shafer [10,11,41]). The
term “p-box” was first used by Ferson [15].

Definition 2.10 (Interval Arithmetic)
Interval arithmetic is a set of rules for set
operations defined on intervals and is based
on algebraic expressions, called base func-
tions. Fach variable in base function expres-
sion is replaced with the interval to which
this variable belongs. These replacement in-
tervals are considered independent regard-
less whether some of them replace the same
variable. Equivalently, the derived set from
the arithmetic is the image of a function
called derived function, which is derived from
the base function by replacing each appear-
ance of a variable in the algebraic expres-
sion of the base function with a new different
variable symbol, over the Cartesian product
of the intervals that these new variables be-
long to.

Theorem 2.3 (Connectedness, Convergence
and Continuity of Interval Arithmetic)

If f is a continuous base function over the
Cartesian product of intervals I, ..., I,,, then
the derived set from using the interval arith-
metic, denoted by f[I1,...,I,], is an inter-
val. Furthermore, if f is continuous over
the Cartesian product of the closures of I,
eoey I, then the width of f[I,...,I,]| tends
to zero as the widths of I, ..., I, tend to
zero. If f is continuous over the Cartesian
product of intervals I, ..., I, as well as the
Cartesian product of intervals I, ..., I, then
fll, ey ) = flIy L] as I — I (i =
1,...,m), provided one of the following two
conditions is satisfied:

(1) Ly, ..., I, are finite intervals.
2 Lct, .. IcI,.

Proof: See [31].

Remark: The interval arithmetic in Defi-
nition 2.10 is also called standard interval

arithmetic by Williamson [45] and idealized
interval arithmetic by Kearfott [24]. The “de-
rived function” concept here is consistent
with the term “interval extension” in Moore
[33, 34]. The notation f[Iy,...,I,| that we
use here is the image of the interval ex-
tension over intervals Iy, ..., I,,. It is true
that f(Iy,...,I,) C flhL,...,I,] [33,34]. For
instance, let f(z) = ¢ —z, and z € [ =
[0,1]. Then f(I) = {0}, while f[I] =[0,1]—
[0,1] =[-1,1].

A form of interval arithmetic first appeared
at least as early as in 1924 [7] and 1931 [47],
then in 1958 [44]. Modern development of
interval arithmetic began with Moore’s dis-
sertation [32] in 1962. Since then there have
been thousands of publications in the field
of interval analysis and its applications, plus
an increasing amount of software support
for interval computations. Major advances
have been made by Moore [33,34], Nickel [37],
Alefeld and Herzberger [1], Kearfott [24,25]
and Kreinovich [26], Kreinovich et al. [29],
and Jaulin et al. [20]. A web site for interval
computations is
http://www.cs.utep.edu/interval-comp/.

3 Algorithm of PDV Arithmetic

PDV Arithmetic is a set of rules to calcu-
late generalized probabilistic discretizations
of PDVs. A PDV can be a discrete, contin-
uous, or mixed random variable. We store a
PDV in computer by its generalized prob-
abilistic discretization. In PDV Arithmetic,
the calculations among PDVs are actually
the calculations among the generalized prob-
abilistic discretizations of PDVs. Theorem 2.1
tells us that if the width of the generalized
probabilistic discretization of each PDV is

small, we may obtain precise results for the
PDVs. Therefore, the task of PDV Arith-



metic is to find generalized probabilistic dis-
cretization for each PDV whose width is small
when the widths of the generalized proba-
bilistic discretizations of the input PDVs are
small.

We classify two types of PDVsin PDV Arith-
metic:primitive PDV and derived PDV. Prim-
itive PDV is explicitly defined as a PDV in-
put by the user. It can also be called input
PDV. Derived PDV is defined as a function
of primitive PDV(s) via algebraic calcula-
tions. Derived PDV includes intermediate
PDV, which is not declared in the source
program as PDV but arises in the interme-
diate stages of a computation.

Primitive PDV is merely a PDV input. Al-

though it is defined via a variable name,

it is independent of the variable name. On

the contrary, the variable name via which

a primitive PDV is defined is the identity

function of the primitive PDV and is a de-

rived PDV. From this point of view, all PDV
names in a program are functions of the PDV
iputs and hence are derived PDVs.

Primitive PDVs control the relationships among

derived PDVs generated during the execu-
tion of the program. Thus derived PDVs are
like puppets on a stage connected through

interrelated strings governed by primitive PDVs.

There are cases when primitive PDVs are
correlated. If the correlations of the primi-
tive PDVs can be expressed as function re-
lations or can be approximated by algebraic
expressions from statistical regressions [17],
then some primitive PDVs that are func-
tions of other primitive PDVs can be con-
verted to derived PDVs. This approach can
reduce the number of correlated primitive
PDVs to the maximal extend and improve
the efficiency of the program.

In the current version of PDV Arithmetic,

we require the following condition.

Condition 3.1 All primitive PDVs are in-
dependent.

Condition 3.1 provides mathematical con-
venience to develop PDV Arithmetic. Al-
though this assumption excludes problems
with correlated input random variables that
cannot be reduced to independent primitive
PDVs, using the above approach there are
still many problems where the condition is
satisfied.

To satisfy Condition 3.1, PDV inputs re-
gardless whether they are defined by the
same variable names or have identical gener-
alized probabilistic discretizations, are con-
sidered different primitive PDVs. This guar-
antees that every derived PDV has a non-
ambiguous pre-image PDV set. That is, if
a PDV is redefined using the same variable
name, then it is treated as a new, and dif-
ferent, primitive PDV. Thus redundant def-
initions of the same PDV in a computer
program should be avoided, unless the pro-
grammer means to define a different primi-
tive PDV. The following example (written
in pseudo codes) illustrates how this rule
works.

PDV =x,y,z,w

GPD(z) = {([1,3],0.7); ([2,4],0.3) }

y=a’

GPD(z) ={([1,3],0.7); ([2,4],0.3)}

z =18

w=y—2z
z is used twice as a variable symbol to in-
put PDV data. Although y, z and w are de-
rived from the same variable symbol z, their

pre-image primitive PDV sets are different.
y is derived from the first PDV input (first



primitive PDV) only, z is derived from the
second PDV input (second primitive PDV)
only, and w is derived from the first and
second PDV inputs (first and second primi-
tive PDVs). Notice that both y and z have
identical but independent generalized prob-
abilistic discretizations. Hence there is no
such a result that w = y — z is equal to 0
with probability 1.

The above rule is summarized in the follow-
ing condition that is also required in PDV
Arithmetic.

Condition 3.2 FEach PDV input defines a
new primitive PDVs.

When calculation between two PDVs occur,
it is passed to the bins and the probabilities
in the generalized probabilistic discretiza-
tions. When the two PDVs are independent,
any arbitrary pair of bins from the two gen-
eralized probabilistic discretizations can be
used to perform the calculation. When de-
pendency or partial dependency exists in
the two PDVs, only some pairs of bins from
the two generalized probabilistic discretiza-
tions can be used to perform the calculation.
These pairs are determined by the common
primitive PDVs in the two pre-image prim-
itive PDV sets. After the possible pair of
bins are determined, the interval arithmetic
in Definition 2.10 is utilized to obtain a gen-
eralized probabilistic discretization.

In PDV Arithmetic, a bin of a derived PDV
is distinguished from other bins by a set of
indices of the bins (from which the bin is
determined) of the primitive PDVs in the
pre-image primitive PDV set of this PDV.
Any non-input PDVs are derived from func-
tions that are algebraic expressions of other
PDVs and these functions can be decom-
posed into a sequence of unitary or binary
operations on the involved PDVs. The cases

in which a PDV z is derived from a PDV
z only (unitary operation), or from PDVs
z and y (binary operation), are analyzed as
follows.

(1) z is a function of x only.
Suppose that x is a function of primi-
tive PDVs e, ..., e,. Each bin of z with
indices (i¢,, ..., %,) and with the corre-
sponding probability p,(ie,, ..., %, ) de-
termines a bin of z with indices (i, , ..., i, )
and with the corresponding probability

Pz(lers o le,) = Pallers ooy le,) = H;:1 De; (Z.ej)'

(2) z is derived from x and y.

(a) = and y are independent.
Suppose that z is a function of prim-
itive PDVs ey, ..., €., and y is a
function of primitive PDVs e, 1,
..., ér1s. By independence, any ar-
bitrary pair of bins of z and y can
form a bin of z via the interval arith-
metic and via multiplying the cor-
responding probabilities. That is,
the bin of z with indices (ic, , ..., i, )
and with the corresponding proba-
bility pg(te;, .-, %, ) and the bin of
y with index (i, .-, te,,,) and
with the corresponding probability
Dy(tep i1y s Ge,,,) form the bin of z
with indices (i, , ..., %,,,) and with
the corresponding probability
Dz(lers s lerrs) = Pallers vy le,)
: py(iem-la "'7/I:e'r+s) = Hgi; DPe, (iej)'

(b) z and y are dependent.
Suppose that x and y are functions
of primitive PDVs ey, ..., e,. Only
the bin of z and the bin of y with
common indices are eligible to form
a bin of 2z, and the corresponding
probabilities must be equal. That
is, the bin of x and the bin of y with
common indices (i, ..., i, ) form the
bin of z with indices (i, .., i, ) and
with the corresponding probability



Pzllers -+ fe,) = Pallers ooy le,) =
py(zelv oy le,) = H§:1 DPe; (Zej)'

(¢) = and y are partially dependent.
Suppose that z is a function of prim-

itive PDVs ey, ..., €, €741, -y €ris;

and y is a function of primitive PDVs
€rily vy €rpsy Cptstly ooy Crpstt, where

r>0,s>0,t> 0. Only the bin of
x and the bin of y that have com-
mon values on 4., ..., %,,, in the
two index sets (i, ..., te,,,) and
(feyi1s o> lerysys) AN be used to form
a bin of z. That is, the bin of x with
indices (i, ..., %,,,) and with the
corresponding probability p, (ie,, --.,
te,,,) and the bin of y with indices
(eyi1y vs teppsy,) and with the cor-
responding probability py (i, ., ..,
te,,ss.) form the bin of z with in-
dices (Ze,, ---, te,,,,.) and the corre-
sponding probability p, (i, ..
= T3+ ey (ie,).

Note: Although the decomposition of func-
tion f into a sequence of unitary or binary
operations is not unique, different decompo-
sitions of f applied on Iy, ..., I, using the
interval arithmetic end up with the same de-
rived interval f[I1,...,I,] (see [31]).

The algorithm described as above defines an
arithmetic called Primitive PDV Arithmetic
that is based on primitive PDVs.

Definition 3.1 (Primitive PDV Arithmetic)
Let {e1,...,en} be the pre-image primitive
PDV set of PDV z, and x = f(ey,...,€,)
where f is a continuous algebraic expres-
sion on the Cartesian products of the bins
of e1,...,en. f can be decomposed into a se-
quence of unitary or binary operations. Prim-
itive PDV Arithmetic is a set of rules, which
are described in the above cases 1, 2(a), 2(b),
and 2(c) for any decomposition of f, to de-
termine a generalized probabilistic discretiza-

10

") ier+s+t )

tion of x. Although the decomposition of f
into a series of unitary and binary opera-
tions is not unique, the generalized proba-
bilistic discretization of x obtained in this
way s always unique and can be formulated
as

GPD(z)= {(I,p) ‘ I=flh, ..., L),

p=[]ps; V(L p:) € GPD(e;);
=1

1 =1, ,n}

where notation f[I, ..., I,,] is defined in The-
orem 2.8 and has been proved to be an in-
terval.

The convergence of GPD(z) follows from
Theorems 2.3 and 2.1. It can be summa-
rized as

Theorem 3.3 (Convergence of Primitive PDV

Arithmetic)

For all PDVs that are derived from primi-
tive PDVs via algebraic expressions that are
continuous on the Cartesian products of the
closures of the bins of primitive PDVs, the
generalized probabilistic discretizations cal-
culated from Primitive PDV Arithmetic con-
verge to the PDVs as the widths of the gen-

eralized probabilistic discretizations of all prim-

itive PDVs tend to zero.

Definition 3.2 (Ezact Generalized Proba-
bilistic Discretization)

Let {e1,...,e,} be the pre-image primitive
PDV set of PDV z, and x = f(ey,...,e,)
where f is a continuous algebraic expres-
ston on the Cartesian products of the bins
of ey, ...,e,. The exact generalized proba-
bilistic discretization of x with respect to

GPD(ey), ..., GPD(e,), denoted by EGPD(x),

s defined by



EGPD(z) = {(I,p) ‘ I=f(L,..1,),

p=[Ipi; V(L p:) € GPD(e;)
=1

1= 1,...,n}

where f(I,...,I,) is the function image of
fover Iy x -+ X I,.

Theorem 3.4 (Continuity of Exact Gener-
alized Probabilistic Discretization)

Let ey, ..., e, be independent PDVs with gen-
eralized probabilistic discretizations GPD(e;)
and GPDy(e;) where i = 1,...,n and k =
1,2,---. Let x = f(e1,...,e,) where f is a

continuous algebraic expression on the Carte-

stan products of the bins of ey, ...,e,. Sup-
pose that GPDy(e;) — GPD(e;) as k — oo
for all©. Then

klim EGPDy(z) = EGPD(x)
—oo

provided one of the following two conditions
is satisfied:

(1) The bins in GPD(e;) are finite inter-
vals for all 7.
(2) GPDy(e;) € GPD(e;) for all k and i.

Proof: See [31].

Definition 3.3 (Ezact Probability Distribu-
tion Bounds and FEzact Probability Distribu-
tion Boz)

The p-bounds and p-box determined by the
exact generalized probabilistic discretization
of a PDV with respect to the generalized prob-
abilistic discretizations of the wvariables in
the pre-image primitive PDV set of the PDV
are called the exact p-bounds and exact p-box
of the PDV with respect to the generalized
probabilistic discretizations of the variables
in the pre-image primitive PDV set of the
PDYV, respectively.
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We extend Primitive PDV Arithmetic as Re-
fined Primitive PDV Arithmetic that can
calculate the exact generalized probabilis-
tic discretization of a PDV with respect to
the generalized probabilistic discretizations
of the primitive PDVs in the pre-image prim-
itive PDV set.

Definition 3.4 (Refined Primitive PDV Arith-
metic)

Let {eq,...,e,} be the pre-image primitive
PDV set of PDV z, and x = f(ey,...,e,)
where f is a continuous algebraic expres-
ston on the Cartesian products of the bins
of e1,...,en. Refined Primitive PDV Arith-
metic is a set of rules to determine a special
generalized probabilistic discretization of x
with respect to GPD(e1), ..., GPD(e,) by
performing the following steps:

e For 1l <1 < n, refine each bin of e; to ob-
tain a refined generalized probabilistic dis-
cretization of e;, denoted by RGPD(e;),
which has the representation

{(Iz’kia pz’k,-)

l; l;
U L, = L, D pir, = pi;

k=1 k;=1

V(L pi) € GPD(ei)} .

o Apply Primitive PDV Arithmetic on
RGPD(e;), 1 <i<n, to obtain a refined
generalized probabilistic discretization of
x, which is given by



RGPD(z)= {(f[llkl, ooy Tnkn] ﬁpk)

‘ kz = 1, ,l“ 1= ]_, ey 1

)

li li
U Lk, = L, Y pir, = pi;

ki=1 ki=1

V(I pi) € GPD(ei)} .

e Combine all the bins in RGPD(z) that

are obtained from the same bins in GPD(e;),

1 <1 < n, and obtain a derived set that is
an interval when f is continuous from the
proof of the following Theorem 3.5. Make
this interval a bin in a new generalized
probabilistic discretization, and calculate
the probability associated with this bin by
multiplying the probabilities on the corre-
sponding bins in GPD(e;), 1 <i <n.

e The new generalized probabilistic discretiza-

tion obtained from above is a special gen-

eralized probabilistic discretization of x with
respect to GPD(ey), ..., GPD(e,), denoted

by SGPD(z), and has the representation

SGPD(x)
= {( U f[flkl, ---,Inkn] ) sz)
1<k <l i=1
1<i<n
l.,; li
U Iy, = I Z Pik; = Di;
k=1 ki=1

YV (L, p;) € GPD(e;); i =1, ,n}

Theorem 3.5 (Significance and Convergence

of Refined Primitive PDV Arithmetic)

Let {e,...,e,} be the pre-image primitive
PDV set of PDV z, and x = f(ey,...,€,)
where f is a continuous algebraic expres-
sion on the Cartesian products of the bins
of €1,...,en. Then SGPD(x) computed via
Refined Primitive PDV Arithmetic is a gen-
eralized probabilistic discretization of x, and
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EGPD(z) C SGPD(z). (3.1)

Furthermore,

(1) if each bin in GPD(e;) is a finite inter-
val for 1 <1 < n, and f is continuous
on the Cartesian products of the clo-
sures of the bins in GPD(ey), ..., GPD(ey,),
then

lim
|[RGPD(e;)|| — 0
1<i<n

=EGPD(x);

SGPD(z)

(3.2)
(2) if there are sequences GPDy(e;) (k =
1,2,...) such that each bin in GP Dy(e;)
is a finite interval, f is continuous on
the Cartesian products of the closures
of the bins in GPDy(e1), ..., GPDy/(ey,),

GPDk(eZ) Q GPD(GZ) and limk_,oo GPDk (61)

GPD(e;) for each i, 1 < i <n, then

lim lim SGPDk(x)
k—oco ||RGPDy(e;)| — 0
1<i<n
= klggo EGPDy(z)
= EGPD(x) . (3.3)

Proof: See [31].

Remark: Inclusion relation (3.1) implies that
the bounds given by SGPD(z) enclose all
the possible distributions of . When all in-
put bins are finite intervals, Relation (3.2)
guarantees SGPD(x) converges to EGPD(x)
that determines exactly the set of all the
possible distributions of z, as the input bins
are refined. When there is an input bin with
infinite length or with singularity at one or
two of its endpoints, Relation (3.3) guaran-
tees that proper finite truncations on the
infinite-length input bins or to exclude the
singularities can be performed to achieve con-
vergent approximations.

Combining Theorems 3.4 and 3.5 we have



Corollary 3.6 (Stability of Refined Primi-
tive PDV Arithmetic)

In Refined Primitive PDV Arithmetic, small
perturbations of the input bins do not lead to
big changes in the results provided that all
input bins are finite intervals.

Finally, we have

Definition 3.5 (PDV Arithmetic)
Primitive PDV Arithmetic and Refined Prim-
itive PDV Arithmetic together are called PDV
Arithmetic.

4 Implementation of PDV Arithmetic

PDV arithmetic is implemented in computer
languages by including PDV as a basic data
type. The implementation includes three as-
pects: 1. PDV recording; 2. preprocessor;
and 3. subroutine library.

4.1 PDYV Recording

As a basic data type, all PDV names in a
program must be declared in the declarative
statement with the same priority as other
data types such as integer and real. These
PDVs are called declared PDVs. There is
another kind of PDV that appears when in-
termediate temporary variables are needed
in the event that an algebraic expression is
decomposed into a sequence of unitary and
binary operations. We call them intermedi-
ate PDVs. Declared PDVs and intermediate
PDVs are derived PDVs, i.e. they are func-
tions of primitive PDVs.

PDVs are recorded by natural numbers in
the order that they appear in the program.
There is a one-to-one correspondence be-
tween PDVs and a finite sequence of natural
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integers starting from 1. We call these inte-
gers the labels or indices of the correspond-
ing PDVs. For example, if we define PDVs
x, Yy, and z in a program and no other PDVs
are defined before them, then z, y, and 2
are recorded as PDV 1, 2, and 3 in the PDV
list. Similarly, all primitive PDVs are iden-
tified by their indices that are the orders in
which they are input by the user. For ex-
ample, primitive PDV 2 is the second PDV
input.

The generalized probabilistic discretization
of a PDV is characterized by its bins and the
probabilities associated to the bins. Each
bin has the left and right endpoints. Thus, in
principle we can use three arrays (left end-
point array, right endpoint array and prob-
ability array) to store all the information
about the generalized probabilistic discretiza-
tion of a PDV. Similarly, left endpoint array,
right endpoint array and probability array
are also used for primitive PDV.

In PDV Arithmetic, refinement is the key
method for computing arbitrarily tight up-
per and lower bounds for a bin in the ex-
act generalized probabilistic discretization
of a PDV. As stated in Theorem 3.5, the
accuracy of the approximation to the exact
bounds does not depend on the way how the
refinement is chosen, but only depends on
the width of the refinement. Thus in the im-
plementation, uniform subdivision is a sim-
ple and natural refinement to be used in
such a way that a bin divisor (denoted by
BIN_DIVISOR in our PDVFOR77 implemen-
tation) that is a positive number uniformly
subdivides each input bin and the associated
probability of the bin to achieve refined gen-
eralized probabilistic discretizations of prim-
itive PDVs. The larger the bin divisor, the
better the approximation. However, if we let
m be the bin divisor, n be the total number
of primitive PDVs in the program, then the



total number of bins under consideration in
the program would be proportional to m™.
Thus the chosen value of bin divisor is lim-
ited by the storage capacity and speed of
the computer.

Back to the PDV recording it is crucial to
distinguish by usage those arrays that store
the endpoints of bins and the associated prob-
abilities. There are four types of these ar-
rays, two of them for primitive PDV and
the other two for derived PDV. Namely, for
each primitive PDV there are three arrays
used for original inputs and three other ar-
rays for the refined inputs; for each derived
PDV there are three arrays used for the gen-
eralized probabilistic discretizations derived
from the refined inputs and three other ar-
rays for the special generalized probabilistic
discretizations derived from regrouping (de-
scribed in Definition 3.4).

As we have known, every bin of a derived
PDV is obtained from the bins of the vari-
ables in the pre-image primitive PDV set via
interval arithmetic. Thus the index of a bin
in the generalized probabilistic discretiza-
tion of a derived PDV is actually a function
of the indices of the bins of the variables
in the pre-image primitive PDV set. To ac-
count for the relationships among PDVs, we
need to establish a portfolio for each derived
PDV. This portfolio includes:

(1) The pre-image primitive PDV set of
the derived PDV;

(2) A quantity to reflect the relationship
of a bin of the derived PDV and the
corresponding bins of the variables in
its pre-image primitive PDV set. This
quantity is represented by the order (or
indez) in which the bins of the derived
PDV are arranged.

We construct a primitive index set for each
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derived PDV. The primitive index set is a
set of tuples out of the pre-image primitive
PDV set of the derived PDV. The number
of dimensions of the tuple is the number of
primitive PDVs in the pre-image primitive
PDV set of the derived PDV. Each dimen-
sion of the tuple corresponds to a variable
in the pre-image primitive set, and the value
of the dimension index ranges from 1 to the
number of bins of this primitive PDV. Ob-
viously, the primitive index set of a PDV
records all the indices of the bins of the vari-
ables in its pre-image PDV set. To deter-
mine the index of a bin of a derived PDV
from its primitive index set, the following
relation (4.1) is used.

Assume that there is an n-D index set
{(il,...,in) | 1<i,<m, 1<r< n}

This index set can be mapped to a 1-D index
set via

n—1 n
(11, oy in) — > (15— 1) J[ mw +in.
j=1 r=j+1

(4.1)

Mapping (4.1) is a one-to-one mapping. Us-
ing (4.1) to arrange the order of the bins
of the derived PDV implies that the index
of a bin of the derived PDV uniquely corre-
sponds to some indices of the bins of the
variables in the pre-image primitive PDV
set. Therefore, arranging the order of the
bins of a derived PDV in this way com-
pletely reflects the information in the pre-
image primitive PDV set.

An illustrative example is given as follows.
Consider a PDV that is a function of two
inputs: primitive PDVs 1 and 3. Primitive
PDV 1 has 30 bins, and primitive PDV 3
has 40 bins. Then this PDV has 30 x 40 =



1200 bins. Choose an arbitrary bin, say, the
1000th bin of this PDV. Using formula (4.1),
we obtain an integer equation:

40 (iy — 1) + iy = 1000,
1<i; <30, 1<iy<40.

The unique solution to the equation is 7; =
25, 15 = 40. This means that there is a one-
to-one correspondence between the 1000th
bin of this PDV and the pair of the 25th
bin of primitive PDV 1 and the 40th bin of
primitive PDV 3. This relationship is used
to calculate the interval and the probability
of the 1000th bin of this PDV as well as
to manipulate the correlations between this
bin and the bins of other PDVs.

Relation (4.1) also provides a formula to
compute exact generalized probabilistic dis-
cretization. Recall that in Refined Primitive
PDV Arithmetic, we subdivide each bin of
primitive PDVs to get refined generalized
probabilistic discretization. Each refined bin
is given a label, called ezact-label, that points
to the original input bin which it comes from.
As a result, each bin of a derived PDV that
is derived from the refinement has an exact-
label that is derived from the exact-labels
of the bins of the variables in its pre-image
primitive PDV set. If we assume that n is
the cardinality of the pre-image primitive
PDV set (in which the primitive PDVs are
listed in ascending order by their indices) of
a PDV, ¢, is the exact-label of the refined
bin of the primitive PDV that is located at
position 7 in the pre-image primitive PDV
set (1 < r < n), and m, is the number of
bins of this primitive PDV at position r be-
fore being refined, then the right hand side
of (4.1) defines the exact-label of the de-
rived bin of the derived PDV. All the bins
of the derived PDV with the same exact-
label come from the same bins of the orig-
inal PDV inputs (that are not refined) in
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the pre-image primitive PDV set. Combin-
ing the bins of the derived PDV that have
the same exact-label, we obtain a bin and its
associated probability in the special gener-
alized probabilistic discretization that con-
verges to the exact generalized probabilistic
discretization of the PDV as the bin divisor
tends to co.

4.2 Preprocessor

The new data type PDV in a computer lan-
guage needs to be parsed in order to be com-
patible with the existing computer compil-
ers. We use a preprocessor for this task. The
preprocessor can be written in the scripting
language PERL because of the portability of
PERL. After the parsing, a number of files
are generated and they, along with the nec-
essary subroutine library, can be compiled
by the compilers to generate an executable
output file.

In the current implementation, PDV data
type can be used only in main program. The
primary functions of the preprocessor are in
three aspects: 1. declarative statements; 2.
input PDV data; and 3. executable state-
ments. Besides, some basic simplifications
are automatically done by default by the
preprocessor to reduce the uncertainties of
PDVs, unless the user explicitly deactivates
this feature.

We will now describe the primary functions
of the preprocessor in parsing.

(1) Declarative statements
All PDVs that appear in the source
program must be declared as other ex-
isting data types, such as real and in-
teger. Each PDV can be declared only
once. The syntax for declaring PDVs is
as follows.




pdv variable 1, ..., variable n

All the PDV variable names are placed
in a symbol table and labeled in the
order as they appear. These labels are
stored in a PDV label list that are used
as pointers to the PDVs in the pro-
gram. The intermediate PDVs gener-
ated by parsing algebraic expressions
are also recorded in the PDV label list
at the time they appear. The prepro-
cessor should be able to reuse these tem-
porary variables in the expressions to
minimize the total number of tempo-
rary variables in the list.

Input PDV data
When data are input to a PDV by the
user, a new primitive PDV is enumer-
ated such that the PDV and the corre-
sponding primitive PDV share the same
data.

The syntax for inputting PDV data
is as follows. Assume z is a PDV, then
the statements

bin[z] = [ay, by; az, ba; ...; Gp, by

df[.%’] = [plap%-"apn]
Cdf[.’l)] = [q17q2a 7Qn]

define z with n bins [aq, b1], [az, b2], ...,
[an, by], with probabilities py, ps, ..., Pn
on each bin, and with cumulative prob-
abilities ¢1, ¢, -.., ¢, up to each bin,
respectively. a;, b;, p;, ¢ (1 < i < n)
can be numbers, array elements, or al-
gebraic expressions of non-PDV vari-
ables. When they are numbers, require-
ments such as a; < b;, p; > 0 for 1 <
1 <n,and 0 < ¢ < --- < g, must
be satisfied, otherwise the preprocessor
will print out the error messages.
There is a restriction on the orders of
the PDV input statements. The bin in-
put statement must appear before the df
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and cdf input statements for the same
input PDV. Besides, the bin statement
can appear by itself without the df and
cdf statements. When there is the bin
statement only, the preprocessor assumes
that each bin gets its probability from
the portion of its width out of the total
widths of all the bins, that is, it calcu-
lates the corresponding probabilities on
the bins based on the formula

bi — Q;
r=1(br — a;) ’

If there are df or cdf statements for
the same PDV name in the following
part of the program, the preprocessor
will update the data in the probabil-
ity arrays while keeping the informa-
tion about the bins unchanged. If a new
bin statement is defined for the same
PDV name, all the previous informa-
tion about this derived PDV is over-
ridden and a new primitive PDV is de-
fined.

The cdf statement is fragile in the
sense that it requires the already-existing
bin statement to have ascending end-
pOiIltS, i.e., aq S b1 S Q9 S b2 S
a, < b,. The preprocessor parses the
cdf statement by calculating the corre-
sponding probability for each bin using
subtraction. Notice that PDV Arith-
metic needs only associated probabili-
ties on the bins in the generalized prob-
abilistic discretization. Hence cdf state-
ment is designed only for the user to
have the convenience to input cumula-
tive probabilities in the program.

There is some flexibility for the user
when inputting probabilities. The val-
ues in df and cdf statements can be
treated as weights, where the values in
df statement need not sum to 1, and
the last value in cdf statement need not
be 1. All values in df and cdf state-

pi = 1<i<n.



ments are required to be nonnegative,
and the values in cdf statement must be
increasing. The preprocessor can nor-
malize the input weights automatically.

(3) Executable statements
The executable statements includes as-
signment statements and the output state-
ments. The PERL preprocessor parses
them into a sequence of calls to the sub-
routines in the subroutine library.

4.8 Subroutine Library

The subroutine library designed for PDV
Arithmetic is no doubt the most important
part of the implementation. It provides many
subroutines to answer the subroutine calls
resulting from parsing the statements that
contain PDV data type.

Some often-used probability distribution func-
tions can be stored in the subroutine library.
Proper truncations are needed for infinite
interval domain in order to receive finite prob-
abilistic discretization. For example, the stan-
dard normal distribution function can be
stored in the following way. We truncate the
tails (—oo,—5) and (5,00) by losing prob-
ability 0.5 - 6.981 - 107 on each tail. We
then divide interval [—5, 5] into 1000 bins,
and get the cumulative probability for each
breaking point from any mathematical or
statistical handbook (e.g., see [28]). To make
up the probabilities lost from the trunca-
tion, distribution function values 0 and 1
are assigned to the breaking point —5 and
5, respectively. Because any normal distri-
bution is derived from the combination of
its mean, its standard derivation, and the
standard normal distribution, a probabilis-
tic discretization of any normal distribution
with 1000 equal-width bins can be gener-
ated from the above stored standard normal
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distribution. In practice, the user can use
a global parameter BIN. NUM_NORMAL to
control the actual number of bins of the nor-
mal distribution. A subroutine in the library
can generate a probabilistic discretization
for the desired normal distribution from the
stored standard normal distribution with the
bin number specified by the user via this pa-
rameter.

5 Examples

As applications of PDV Arithmetic, some
examples are presented. The computations
in the examples are programmed in PDV-
FOR77, which is an extension of Fortran 77
by adding PDV as a basic data type. The
reader can download PDVFOR77 from
http://math.lanl.gov/~1liw [30].

Example 5.1 Consider a 2 x2 matriz A =

a c

bd

PDVs. The parameters can be linearly de-
pendent, nonlinearly dependent, partially de-
pendent, and independent. The following /
cases will demonstrate the comparisons for
the density functions of the eigenvalues of
this matriz between PDV Arithmetic and Monte
Carlo simulation providing the different re-
lationships among a, b, c, d. The eigenvalues
of the matriz are the roots of the following
characteristic equation

, where the parameters a, b, ¢, d are

A—a)A—d)—bc=0.

(1) a,b,c,d are linearly dependent PDVs,
where a = 0.5d + 1.5, ¢ = 2a — 1,
b = 05c—-05,d e [-1,1] and d is
uniformly distributed. The comparisons
are shown in Figure 5.1.

(2) a,b,c,d are nonlinearly dependent PDVs,
where a = 3d* +1, ¢ = 2a— 1, b =



0.5¢/a+ 0.5, d € [—1,1] and d is uni-
formly distributed. The comparisons are
shown in Figure 5.2.

(8) a,b,c,d are partially dependent PDVs,
where a = 3d*> + 1, b = 0.5¢/a + 0.5,
c € [2,10], d € [-1,1], ¢ and d are
uniformly distributed and independent.

The comparisons are shown in Figure 5.5.

(4) a,b,c,d are independent PDVs, where
a € [1,2],b € [0,1], c € [1,3],d €
[—1,1], and all are uniformly distributed.

The comparisons are shown in Figure 5.4.

The next example is from the challenge prob-
lem set given in Oberkampf et al. [38].

Example 5.2 (Challenge Problem Set)
Let the model of the physical process is given
by

y=(a+b)". (5.1)

The parameters a and b are independent real
numbers, i.e., knowledge about the value of
one parameter implies nothing about the
value of the other, and @ > 0, b > 0. The
task for each problem in the sequence is to
quantify the uncertainty in y given the in-
formation regarding a and b. In other words,
what can be ascertained about the response
of the system y, given only the stated infor-
mation about a and b?

The sequence of problems begins with very
little information concerning a and b so that
they are only known to lie within specified
intervals. Information of different types is
incrementally added in each subsequent prob-
lem in the sequence by way of more speci-
ficity concerning the parameters. The infor-
mation given may be mutually supportive,
or some of it may be contradictory to some
degree.
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smaller eigenvalue

35r

15F

larger eigenvalue

0.6

0.5

0.4

0.1F

Fig. 5.1. Comparisons for the density func-
tions of the eigenvalues between PDV Arith-
metic (solid line) and Monte Carlo simulation
(dot-dashing line) for case (1) in Example 5.1,
where all parameters are linearly dependent.



smaller eigenvalue

45F

35F

larger eigenvalue

0.8

06

0.4

0.2

Fig. 5.2. Comparisons for the density func-
tions of the eigenvalues between PDV Arith-
metic (solid line) and Monte Carlo simulation
(dot-dashing line) for case (2) in Example 5.1,
where all parameters are nonlinearly depen-
dent.
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smaller eigenvalue

Fig. 5.3. Comparisons for the density func-
tions of the eigenvalues between PDV Arith-
metic (solid line) and Monte Carlo simulation
(dot-dashing line) for case (3) in Example 5.1,
where all parameters are partially dependent.



smaller eigenvalue

Fig. 5.4. Comparisons for the density func-
tions of the eigenvalues between PDV Arith-
metic (solid line) and Monte Carlo simulation
(dot-dashing line) for case (4) in Example 5.1,
where all parameters are independent.
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Six problems are specified in the sequence
as follows.

Problem 1: @ and b are in an interval, re-
spectively.

Problem 2: a is in an interval, b is charac-
terized by multiple intervals.

Problem 3: a and b are characterized by mul-
tiple intervals, respectively.

Problem 4: a is in an interval, b is specified
by a probability distribution with imprecise
parameters.

Problem 5: a is characterized by multiple
intervals, b is specified by a probability dis-
tribution with imprecise parameters.

Problem 6: a is in an interval, b is specified
by a precise probability distribution.

The solutions to Problems 1, 2, and 3 can be
obtained analytically by finding the global
maximal and minimal values for function (5.1)
over some interval domains. However, the
rest of the problems requires the considera-
tion of precise or imprecise probability dis-
tributions. In this example, we consider us-
ing upper and lower p-bounds is an appro-
priate way to quantify the uncertainties in
the above problem set. PDV Arithmetic pro-
vides such a computational approach.

Along with the description of each problem
in the sequence is an illustration in which we
input numerical values for the parameters in
the problem set. Accordingly, parameters a
and b are predicted in some independent in-
tervals with equal probabilities. We then ob-
tain generalized probabilistic discretizations
for each of them. We plot the p-box that ap-
proximates the exact p-box of output y with
respect to each of these input generalized
probabilistic discretizations for a and b. To



make a contrast, we plot the refined p-box
of y with respect to the refined probabilistic
discretizations of @ and b that are obtained
by evenly dividing each input bin using a
sufficiently large bin divisor. The refined p-
box gives the shape and range of the lim-
iting probability distribution function that
is determined by additional assumption that
each parameter is evenly distributed on each
input bin.

Problem 1: ¢ and b are contained in closed
intervals A = [ay,a3] and B = [by, bs], re-
spectively.

Illustration 5.2.1: Numerical values for pa-
rameters in Problem 1 are:

A=101,1.0], B=][0.0,1.0].
We choose BIN_DIVISOR = 400. The p-bozx
and refined p-box are plotted in Figure 5.5.

Note that the analytic solution to the range
interval of y is [(e71)°,2.0] ~ [0.6922,2.0].

Problem 2: a is contained in closed inter-
val A = [a1,az], and b is given by n inde-
pendent and equally credible closed inter-
vals B; = [b],b}], where j = 1,...,n. Given
this information, consider the following fam-
ily of problems.

2a) Bj is a consonant collection of inter-
vals (i.e., nested intervals). Without loss of
generality, we assume B; C Bjy, for j =
1,...,n—1.

2b) Bj is a consistent collections of inter-
vals (i.e., having non-empty overall intersec-
tion). Without loss of generality, we assume

2c) Bj is an arbitrary collection of intervals.

Illustration 5.2.2a: Numerical values for
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parameters in Problem 2a are:

n=4;

A=10.1,1.0];

B; =1[0.6,0.8], By =1[0.4,0.85],
B3 =10.2,0.9], B4=10.0,1.0].

We choose BIN_DIVISOR = 200. By the
assumption that each source of information
concerning b is equally credible, we assign
equal probability 0.25 to each input bin of b
in the source program. The p-box and refined
p-bozx are plotted in Figure 5.6.

Illustration 5.2.2b: Numerical values for
parameters in Problem 2b are:

n=4;

A=10.1,1.0];

B, =[0.6,0.9], By;=1[0.4,0.8],
B; =1[0.1,0.7], B4=10.0,1.0].

We choose BIN_DIVISOR = 200. By the
assumption that each source of information
concerning b is equally credible, we assign
equal probability 0.25 to each input bin of b
in the source program. The p-box and refined
p-bozx are plotted in Figure 5.7.

Illustration 5.2.2c: Numerical values for
parameters in Problem 2c are:

n=4;

A =10.1,1.0];

B, =[0.6,0.8], By =10.5,0.7],
B;=1[0.1,04], B4=10.0,1.0].

We choose BIN_DIVISOR = 200. By the
assumption that each source of information
concerning b is equally credible, we assign
equal probability 0.25 to each input bin of b
in the source program. The p-box and refined
p-bozx are plotted in Figure 5.8.

Problem 3: a is given by m independent
and equally credible intervals A; = [a}, a],



where 7 = 1,...m, and b is given by n inde-
pendent and equally credible closed inter-
vals B; = [b], b3], where j =1, ..., n.

Given this information, consider the follow-
ing family of problems.

3a) A; and B; are consonant collections of
intervals (i.e., nested intervals). Without loss
of generality, we assume A; C A;1q, © =
1,...,m—1;and B; C Bjji,forj=1,...,n—
1.

3b) A; and B; are consistent collections of
intervals (i.e., having non-empty overall in-
tersection). Without loss of generality, we

assume N2, A; # ¢ , and ;_, B; # ¢.

3c) A; and B; are arbitrary collections of
intervals.

Illustration 5.2.3a: Numerical values for
parameters in Problem 3a are:

m=3, n=4;

A, =10.5,0.7], A;=10.3,0.8],
A3 =10.1,1.0];

B, =[0.6,0.6], B;=1[0.4,0.85],
B; =1[0.2,0.9], B4=10.0,1.0].

We choose BIN_DIVISOR = 120. By the
assumption that each source of information
concerning a and b is equally credible, re-
spectively, we assign equal probability 1/3 to
each input bin of a, and equal probability
0.25 to each input bin of b in the source pro-
gram. The p-box and refined p-box are plot-
ted in Figure 5.9.

Illustration 5.2.3b: Numerical values for
parameters in Problem 3b are:
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m=3, n=4;

A; =1[0.5,1.0], A =10.2,0.7],
A3 =10.1,0.6];

B; =[0.6,0.6], By =1[0.4,0.8],
B; =1[0.1,0.7], B4=10.0,1.0].

We choose BIN_DIVISOR = 120. By the
assumption that each source of information
concerning a and b is equally credible, re-
spectively, we assign equal probability 1/3 to
each input bin of a, and equal probability 1/4
to each input bin of b in the source program.
The p-box and refined p-box are plotted in
Figure 5.10.

Illustration 5.2.3c: Numerical values for
parameters in Problem 3c are:

m=3, n=4;

A; =1[0.8,1.0], A =10.5,0.7],
Az =1[0.1,0.4];

B; =1[0.8,1.0], B, =10.5,0.7],
B; =1[0.1,04], B4=10.0,0.2].

We choose BIN_DIVISOR = 120. By the
assumption that each source of information
concerning a and b is equally credible, re-
spectively, we assign equal probability 1/3 to
each input bin of a, and equal probability
0.25 to each input bin of b in the source pro-
gram. The p-box and refined p-box are plot-
ted in Figure 5.11.

Problem 4: a is contained in the closed
interval A, and b is given by a log-normal
probability distribution. One has

A =lay,az], and Inb~ N(u,0)
The value of the mean, u, and the standard

deviation, o, are given, respectively, by the
closed intervals

M = [, p2] and S =][o1,0].

Illustration 5.2.4: Numerical values for pa-
rameters in Problem 4 are:



A=10.1,1.0],

M =1[0.0,1.0], S=1[0.1,0.5].

We choose BIN_DIVISOR = 20. We also
choose BIN.NUM_STD _NORMAL = 20, i.e.,
the number of bins for the standard normal
distribution in the range [—5,5] is 20. The
p-box and refined p-box are plotted in Fig-
ure 5.12.

Problem 5: The information concerning a
is given by m independent sources of infor-
mation. Each source specifies a closed inter-
val A; that contains the values for a. The
information concerning b is given by n inde-
pendent sources of information. Each source
specifies b is given by a log-normal probabil-
ity distribution, where the mean and stan-
dard deviation assume values in closed in-
tervals, M; and S}, respectively. One has

Ai = [aiaaé];

Inb~ N(i?,07);

weM=,u, oeS=][oa;
i:1’2,._,,m; j:1,2,...,’l’b.

The m sources of information for a are equally
credible. So are the n sources for p and o.
Thus we may consider accepting each source
of information with equal probability for each
parameter a, p and o, respectively. Given
this information, consider the following fam-
ily of problems:

5a) A;, M;, S; are consonant collections of
intervals (i.e., nested intervals), respectively.
That is, A; C Ay, fore = 1,....m — 1;
Mj C Mj—i—la Sj C Sj—i-la for j=1,..,n—1.

5b) A;, M;, S; are consistent collections of
intervals (i.e., having non-empty overall in-
tersection), respectively. That is, N, A; #
?, }1:1 Mj 7 ¢, ?:1 Sj 7 9.

5c) A;, M;, S; are arbitrary collections of
intervals.
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Illustration 5.2.5a: Numerical values for
parameters in Problem 5a are:

m=3, n=3;

A; =10.5,0.7], A, =10.3,0.8],
A3 =10.1,1.0];

M, =[0.6,0.8], M,=10.2,0.9],
M; =[0.0,1.0];

S;=10.3,04], S;=1[0.2,045],
S3 =1[0.1,0.5].

We choose BIN_DIVISOR = 8, and
BIN.NUM_NORMAL = 20. By the assump-
tion that each source of information con-
cerning a, pu and o s equally credible, re-
spectively, we assign equal probability 1/3 to
each input bin of a, u and o in the source
program. The p-box and refined p-box are
plotted in Figure 5.13.

Illustration 5.2.5b: Numerical values for
parameters in Problem 5b are:

m=3, n=3;

A; =1[0.5,1.0], A =10.2,0.7],
A3 =10.1,0.6];

M; =[0.6,0.9], M,=10.1,0.7],
M; =[0.0,1.0];

S; =10.3,0.45], S, =10.15,0.35],
S3 =[0.1,0.5].

We choose BIN_DIVISOR = 8, and
BIN_.NUM_NORMAL = 20. By the assump-
tion that each source of information con-
cerning a, | and o s equally credible, re-
spectively, we assign equal probability 1/3 to
each input bin of a, i and o in the source
program. The p-box and refined p-box are
plotted in Figure 5.14.

Illustration 5.2.5c: Numerical values for
parameters in Problem 5c are:



m=3, n=3;

A, =1[0.8,1.0], A;=1[0.5,0.7],
A3 =10.1,0.4];

M; =[0.6,0.8], M,=1[0.1,04],
M; =[0.0,1.0];

S;=10.4,0.5], Sy =1[0.25,0.35],
S3 =1[0.1,0.2].

We choose BIN_DIVISOR = 8, and
BIN_.NUM_NORMAL = 20. By the assump-
tion that each source of information con-
cerning a, | and o s equally credible, re-
spectively, we assign equal probability 1/3 to
each input bin of a, p and o in the source
program. The p-box and refined p-box are
plotted in Figure 5.15.

Problem 6: a is contained in closed interval
A, and b is given by a lognormal probability
distribution. That is,

A=lay,a3] and Inb~ N(p,0).

The values of u and o are precisely known.

Illustration 5.2.6: Numerical values for pa-
rameters in Problem 6 are:

A=10.1,1.0], p=05, o=05.
We choose BIN_DIVISOR = 200, and
BIN.NUM_NORMAL = 250. The p-box and

refined p-box are plotted in Figure 5.16.

Figures 5.5-5.16 are very suggestive. Prob-
lems 1 to 3 are arranged in a monotone in-
creasing order in information about param-
eters a and b, that is, more and more in-
formation for parameters a and b are ob-
tained. It is true that the more information,
the more specific the generalized probabilis-
tic discretization, thus the p-boxes are in a
nested order, i.e., the latter p-box is con-
tained in the former one. The figures illus-
trate how the p-boxes are in nested order.
Problems 4 and 5, Problems 4 and 6 are

Mlustration 5.2.1 for Problem 1

p-box

08 refined p-box

0.5

0.4

0.3

0.2F

0.1r

0 I I I I I I
0.6 08 1 1.2 1.4 1.6 18 2

Fig. 5.5. The p-box and refined p-box
for y = (a + b)* where a belongs to
[0.1,1.0], and b belongs to [0.0, 1.0]. We choose
BIN_DIVISOR = 400.

Tustration 5.2.2a for Problem 2a

0.9

0.8

07 refined p-box
0.6
05F
04r
p-box
03

0.2F

0.1r

0.6

Fig. 5.6. The p-box and refined p-box for
y = (a+b)?, where a belongs to [0.1,1.0], and
b belongs to 4 independent nested intervals
[0.6,0.8], [0.4,0.85], [0.2,0.9], and [0.0,1.0].
We choose BIN_DIVISOR = 200.



IMustration 5.2.2b for Problem 2b

0.9

0.8

0.71
refined p-box
06+
05+
041
p-box
031

0.2F

0.1

0.6

Fig. 5.7. The p-box and refined p-box for
y = (a+b)?, where a belongs to [0.1,1.0], and
b belongs to 4 independent consistent intervals
[0.6,0.9], [0.4,0.8], [0.1,0.7], and [0.0,1.0]. We
choose BIN_DIVISOR = 200.

Ilustration 5.2.2¢ for Problem 2c¢

09 p-box

08-
refined p-box
0.71
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p-box
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02F
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0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 5.8. The p-box and refined p-box for
y = (a+b)?, where a belongs to [0.1,1.0], and
b belongs to 4 independent intervals [0.6, 0.8],
[0.5,0.7], [0.1,0.4], and [0.0,1.0]. We choose
BIN_DIVISOR = 200.
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Iustration 5.2.3a for Problem 3a
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0.2
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0.6

Fig. 5.9. The p-box and refined p-box for
y = (a+b)?, where a belongs to 3 independent
nested intervals [0.5,0.7], [0.3,0.8], [0.1,1.0],
and b belongs to 4 independent nested in-
tervals [0.6, 0.6], [0.4, 0.85], [0.2,0.9], [0.0, 1.0].
We choose BIN_DIVISOR = 120.

Mlustration 5.2.3b for Problem 3b
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Fig. 5.10. The p-box and refined p-box for
y = (a + b)?, where a belongs to 3 indepen-
dent consistent intervals [0.5,1.0], [0.2,0.7],
[0.1,0.6], and b belongs to 4 independent con-
sistent intervals [0.6,0.6], [0.4,0.8], [0.1,0.7],
[0.0,1.0]. We choose BIN_DIVISOR = 120.



Mlustration 5.2.3c for Problem 3¢
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Fig. 5.11. The p-box and refined p-box for
y = (a + b)? where a belongs to 3 inde-
pendent intervals [0.8,1.0], [0.5,0.7], [0.1, 0.4],
and b belongs to 4 independent intervals
[0.8,1.0], [0.5,0.7], [0.1,0.4], [0.0,0.2]. We
choose BIN_DIVISOR = 120.

Ilustration 5.2.4 for Problem 4
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Fig. 5.12. The p-box and refined p-box for
y = (a + b)? where a belongs to [0.1,1.0],
and Inb follows a normal distribution N (u, o)
in which p belongs to [0.0,1.0] and o belongs
to [0.1,0.5]. We choose BIN_DIVISOR, = 20,
BIN_.NUM_NORMAL = 20.

26

Ilustration 5.2.5a for Problem 5a

1k

0.9+ )
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0.4
0.3

02r

01F

0

Fig. 5.13. The p-box and refined p-box for
y = (a + b)*, where a belongs to 3 inde-
pendent nested intervals [0.5,0.7], [0.3,0.8],
[0.1,1.0], and Inb follows a normal distribu-
tion N (u, o) where p belongs to 3 independent
nested intervals [0.6,0.8], [0.2,0.9], [0.0,1.0],
and o belongs to 3 independent nested inter-
vals [0.3,0.4], [0.2,0.45], [0.1,0.5]. We choose

BIN_DIVISOR = 8, BIN.NUM_NORMAL =
20.

lustration 5.2.5b for Problem 5b
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Fig. 5.14. The p-box and refined p-box for
y = (a + b)?, where a belongs to 3 indepen-
dent consistent intervals [0.5,1.0], [0.2,0.7],
[0.1,0.6], and Inb follows N(u,o) where p
belongs to 3 independent consistent inter-
vals [0.6,0.9], [0.1,0.7], [0.0,1.0], and o be-
longs to 3 independent consistent intervals
[0.3,0.45], [0.15,0.35], [0.1,0.5]. We choose
ggN_DIVISOR = 8, BIN.NUM_NORMAL =



Mlustration 5.2.5¢ for Problem 5¢
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Fig. 5.15. The p-box and refined p-box for
y = (a+b)?%, where a belongs to 3 independent
intervals [0.8,1.0], [0.5,0.7], [0.1,0.4], and Inb
follows N(u,o0) where p belongs to 3 inde-
pendent intervals [0.6, 0.8], [0.1,0.4], [0.0, 1.0],
and o belongs to 3 independent intervals
[0.4,0.5], [0.25,0.35], [0.1,0.2]. We choose
123§N_DIVISOR = 8, BIN.NUM_NORMAL =

0

Mlustration 5.2.6 for Problem 6
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Fig. 5.16. The p-box and refined p-box
for y = (a + b)* where a belongs to
[0.1,1.0], and Inb follows the normal distribu-
tion N(0.5,0.5). We choose BIN_DIVISOR =
200, BIN. NUM_NORMAL = 250.
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arranged in monotone increasing order in
information, respectively. The figures illus-
trating each of these two pairs of problems
also show that the corresponding p-boxes
are in nested order. The informations about
parameter b are in monotone increasing or-
der in Problems 5 and 6, while the infor-
mation about parameter a are in monotone
decreasing order, thus the p-box in Prob-
lem 6 and the ones in Problem 5 do not have
nested relationship.

In the three cases (i.e., consonant collection,
consistent collection, and arbitrary collec-
tion) of Problems 2, 3, and 5, the figures
seem to suggest some nested relationships.
However the p-boxes are plotted based on
the chosen intervals for a and b that present

some “narrower-and-narrower” pattern in these

cases. In general, p-boxes do not have nested
relationship if we do not have refined infor-
mation for the parameters. In fact, if we use
the area of p-box to measure uncertainty,
then it can be shown (see [31]) that the
area of p-box is invariant with respect to
the lengths of the bins and the associated
probabilities in the generalized probabilis-
tic discretization, i.e., given that the lengths
and the associated probabilities of the bins
are fixed, the area of the p-box is constant.
Therefore, none of these three cases (con-
sonant collection, consistent collection and
arbitrary collection) provides more informa-
tion about the underlying probability distri-
butions than the others.

6 Conclusion

All simulations are approximate by nature,
due to complex and inherent uncertainties
in the data or the computer model being
used. The uncertainty can grow or shrink
during a calculation in unexpected ways. One



way to quantify the uncertainty in computer
simulations is to directly represent the un-
knowns as generalized probabilistic discretiza-
tions of PDVs and define computer arith-
metic rules to accurately track the evolution
of the PDVs during a calculation. The com-
puter arithmetic should also be able to dy-
namically calculate the correlations among
PDVs.

Based on rigorous mathematical reasoning,
we have developed PDV Arithmetic that is

characterized by its complete dependency track-

ing feature. Unlike other existing approaches,
PDV Arithmetic provides convergent enclos-
ing bounds to the solutions. In other words,
PDV Arithmetic does not lose any possible
solution and when the refinement is taken as
infinitesimally small, PDV Arithmetic can
get exactly all the possible solutions.

We implemented PDV Arithmetic by extend-
ing Fortran 77 to PDVFORT77 where PDVs
are declared in the same manner as real vari-
ables are declared in Fortran 77. Associated
with each PDV is a generalized probabilis-
tic discretization. A PERL program parses
a PDVFORT77 program to generate a stan-
dard Fortran 77 program where the PDV
Arithmetic operations are performed by sub-
routine calls.

We demonstrated the effectiveness of the ap-
proach by comparing PDV Arithmetic di-
rectly with Monte Carlo simulations. The
examples verified that a single determinis-
tic PDV computation could accurately cap-
ture the probability distribution generated
by up to many many thousands of Monte
Carlo stochastic simulations.

The highlight part of PDV Arithmetic that
is superior to Monte Carlo methods is its
strong ability in handling imprecise prob-
abilities. Monte Carlo methods require the
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prior knowledge about the probability dis-
tribution of a PDV. That means if a PDV is
characterized by one of its generalized prob-
abilistic discretizations only, Monte Carlo
methods must add additional assumptions
on the PDV in order to get a particular
probability distribution to run the simula-
tions. The results obtained in this way usu-
ally do not reflect the correct solutions. Our
PDV Arithmetic can calculate the correct
probability distribution bounds that enclose
all the possible solutions and, more impor-
tantly, the bounds are sharp when the re-
finements are chosen sufficiently small.

PDV Arithmetic reduces to interval arith-
metic when only the range intervals of PDVs
are considered. The PDV Arithmetic depen-
dency tracking feature provides a framework
to give much tighter interval bounds than
the classic interval approaches that do not
track the correlations between the compu-
tational variables.

Because we cannot eliminate uncertainty in
computer simulations, it is essential to learn
far more than we now understand about un-
certainty assessment and management. This
knowledge is critical to our continued and
expanding use of computation. As comput-
ers become ever-more-powerful tools to sim-
ulate both natural and artificial phenomena,
the potential benefits of understanding un-
certainty increase. PDV Arithmetic offers a
new tool to assess how each source of un-
certainty propagates through computations
and interacts with other sources of uncer-
tainty.
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